Copied to
clipboard

G = C3×C22⋊D8order 192 = 26·3

Direct product of C3 and C22⋊D8

direct product, metabelian, nilpotent (class 3), monomial, 2-elementary

Aliases: C3×C22⋊D8, (C2×C6)⋊7D8, (C2×D8)⋊1C6, D42(C3×D4), C2.4(C6×D8), (C3×D4)⋊20D4, (C6×D8)⋊15C2, C4⋊D41C6, C22⋊C83C6, C6.76(C2×D8), C4.21(C6×D4), C223(C3×D8), D4⋊C44C6, (C22×D4)⋊5C6, (C2×C24)⋊20C22, C6.94C22≀C2, (C2×C12).317D4, C12.382(C2×D4), (C6×D4)⋊27C22, C23.46(C3×D4), C22.77(C6×D4), (C22×C6).163D4, C6.131(C8⋊C22), (C2×C12).912C23, (C22×C12).419C22, C4⋊C41(C2×C6), (C2×C8)⋊1(C2×C6), (D4×C2×C6)⋊14C2, (C2×D4)⋊1(C2×C6), (C2×C4).26(C3×D4), C2.6(C3×C8⋊C22), (C3×C4⋊D4)⋊28C2, (C3×C4⋊C4)⋊35C22, (C3×C22⋊C8)⋊13C2, C2.8(C3×C22≀C2), (C2×C6).633(C2×D4), (C3×D4⋊C4)⋊15C2, (C2×C4).87(C22×C6), (C22×C4).42(C2×C6), SmallGroup(192,880)

Series: Derived Chief Lower central Upper central

C1C2×C4 — C3×C22⋊D8
C1C2C22C2×C4C2×C12C6×D4C6×D8 — C3×C22⋊D8
C1C2C2×C4 — C3×C22⋊D8
C1C2×C6C22×C12 — C3×C22⋊D8

Generators and relations for C3×C22⋊D8
 G = < a,b,c,d,e | a3=b2=c2=d8=e2=1, ab=ba, ac=ca, ad=da, ae=ea, dbd-1=ebe=bc=cb, cd=dc, ce=ec, ede=d-1 >

Subgroups: 450 in 198 conjugacy classes, 62 normal (30 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C22, C6, C6, C8, C2×C4, C2×C4, D4, D4, C23, C23, C12, C12, C2×C6, C2×C6, C2×C6, C22⋊C4, C4⋊C4, C2×C8, D8, C22×C4, C2×D4, C2×D4, C2×D4, C24, C24, C2×C12, C2×C12, C3×D4, C3×D4, C22×C6, C22×C6, C22⋊C8, D4⋊C4, C4⋊D4, C2×D8, C22×D4, C3×C22⋊C4, C3×C4⋊C4, C2×C24, C3×D8, C22×C12, C6×D4, C6×D4, C6×D4, C23×C6, C22⋊D8, C3×C22⋊C8, C3×D4⋊C4, C3×C4⋊D4, C6×D8, D4×C2×C6, C3×C22⋊D8
Quotients: C1, C2, C3, C22, C6, D4, C23, C2×C6, D8, C2×D4, C3×D4, C22×C6, C22≀C2, C2×D8, C8⋊C22, C3×D8, C6×D4, C22⋊D8, C3×C22≀C2, C6×D8, C3×C8⋊C22, C3×C22⋊D8

Smallest permutation representation of C3×C22⋊D8
On 48 points
Generators in S48
(1 13 39)(2 14 40)(3 15 33)(4 16 34)(5 9 35)(6 10 36)(7 11 37)(8 12 38)(17 32 42)(18 25 43)(19 26 44)(20 27 45)(21 28 46)(22 29 47)(23 30 48)(24 31 41)
(1 22)(3 24)(5 18)(7 20)(9 25)(11 27)(13 29)(15 31)(33 41)(35 43)(37 45)(39 47)
(1 22)(2 23)(3 24)(4 17)(5 18)(6 19)(7 20)(8 21)(9 25)(10 26)(11 27)(12 28)(13 29)(14 30)(15 31)(16 32)(33 41)(34 42)(35 43)(36 44)(37 45)(38 46)(39 47)(40 48)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)
(1 8)(2 7)(3 6)(4 5)(9 16)(10 15)(11 14)(12 13)(17 18)(19 24)(20 23)(21 22)(25 32)(26 31)(27 30)(28 29)(33 36)(34 35)(37 40)(38 39)(41 44)(42 43)(45 48)(46 47)

G:=sub<Sym(48)| (1,13,39)(2,14,40)(3,15,33)(4,16,34)(5,9,35)(6,10,36)(7,11,37)(8,12,38)(17,32,42)(18,25,43)(19,26,44)(20,27,45)(21,28,46)(22,29,47)(23,30,48)(24,31,41), (1,22)(3,24)(5,18)(7,20)(9,25)(11,27)(13,29)(15,31)(33,41)(35,43)(37,45)(39,47), (1,22)(2,23)(3,24)(4,17)(5,18)(6,19)(7,20)(8,21)(9,25)(10,26)(11,27)(12,28)(13,29)(14,30)(15,31)(16,32)(33,41)(34,42)(35,43)(36,44)(37,45)(38,46)(39,47)(40,48), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,8)(2,7)(3,6)(4,5)(9,16)(10,15)(11,14)(12,13)(17,18)(19,24)(20,23)(21,22)(25,32)(26,31)(27,30)(28,29)(33,36)(34,35)(37,40)(38,39)(41,44)(42,43)(45,48)(46,47)>;

G:=Group( (1,13,39)(2,14,40)(3,15,33)(4,16,34)(5,9,35)(6,10,36)(7,11,37)(8,12,38)(17,32,42)(18,25,43)(19,26,44)(20,27,45)(21,28,46)(22,29,47)(23,30,48)(24,31,41), (1,22)(3,24)(5,18)(7,20)(9,25)(11,27)(13,29)(15,31)(33,41)(35,43)(37,45)(39,47), (1,22)(2,23)(3,24)(4,17)(5,18)(6,19)(7,20)(8,21)(9,25)(10,26)(11,27)(12,28)(13,29)(14,30)(15,31)(16,32)(33,41)(34,42)(35,43)(36,44)(37,45)(38,46)(39,47)(40,48), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,8)(2,7)(3,6)(4,5)(9,16)(10,15)(11,14)(12,13)(17,18)(19,24)(20,23)(21,22)(25,32)(26,31)(27,30)(28,29)(33,36)(34,35)(37,40)(38,39)(41,44)(42,43)(45,48)(46,47) );

G=PermutationGroup([[(1,13,39),(2,14,40),(3,15,33),(4,16,34),(5,9,35),(6,10,36),(7,11,37),(8,12,38),(17,32,42),(18,25,43),(19,26,44),(20,27,45),(21,28,46),(22,29,47),(23,30,48),(24,31,41)], [(1,22),(3,24),(5,18),(7,20),(9,25),(11,27),(13,29),(15,31),(33,41),(35,43),(37,45),(39,47)], [(1,22),(2,23),(3,24),(4,17),(5,18),(6,19),(7,20),(8,21),(9,25),(10,26),(11,27),(12,28),(13,29),(14,30),(15,31),(16,32),(33,41),(34,42),(35,43),(36,44),(37,45),(38,46),(39,47),(40,48)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48)], [(1,8),(2,7),(3,6),(4,5),(9,16),(10,15),(11,14),(12,13),(17,18),(19,24),(20,23),(21,22),(25,32),(26,31),(27,30),(28,29),(33,36),(34,35),(37,40),(38,39),(41,44),(42,43),(45,48),(46,47)]])

57 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I2J3A3B4A4B4C4D6A···6F6G6H6I6J6K···6R6S6T8A8B8C8D12A12B12C12D12E12F12G12H24A···24H
order122222222223344446···666666···6668888121212121212121224···24
size111122444481122481···122224···4884444222244884···4

57 irreducible representations

dim1111111111112222222244
type+++++++++++
imageC1C2C2C2C2C2C3C6C6C6C6C6D4D4D4D8C3×D4C3×D4C3×D4C3×D8C8⋊C22C3×C8⋊C22
kernelC3×C22⋊D8C3×C22⋊C8C3×D4⋊C4C3×C4⋊D4C6×D8D4×C2×C6C22⋊D8C22⋊C8D4⋊C4C4⋊D4C2×D8C22×D4C2×C12C3×D4C22×C6C2×C6C2×C4D4C23C22C6C2
# reps1121212242421414282812

Matrix representation of C3×C22⋊D8 in GL4(𝔽73) generated by

64000
06400
0080
0008
,
1000
0100
00720
0011
,
1000
0100
00720
00072
,
04100
164100
007271
0001
,
04100
57000
007271
0001
G:=sub<GL(4,GF(73))| [64,0,0,0,0,64,0,0,0,0,8,0,0,0,0,8],[1,0,0,0,0,1,0,0,0,0,72,1,0,0,0,1],[1,0,0,0,0,1,0,0,0,0,72,0,0,0,0,72],[0,16,0,0,41,41,0,0,0,0,72,0,0,0,71,1],[0,57,0,0,41,0,0,0,0,0,72,0,0,0,71,1] >;

C3×C22⋊D8 in GAP, Magma, Sage, TeX

C_3\times C_2^2\rtimes D_8
% in TeX

G:=Group("C3xC2^2:D8");
// GroupNames label

G:=SmallGroup(192,880);
// by ID

G=gap.SmallGroup(192,880);
# by ID

G:=PCGroup([7,-2,-2,-2,-3,-2,-2,-2,365,1094,4204,2111,172]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^2=c^2=d^8=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,d*b*d^-1=e*b*e=b*c=c*b,c*d=d*c,c*e=e*c,e*d*e=d^-1>;
// generators/relations

׿
×
𝔽